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ABSTRACT

The focus of this work is to demonstrate discrete solitons in arrays of coupled nonlinear
waveguides or the controlled switching of optical information from one line to another. Results
have been the successful creation of a linear array of over one hundred soliton waveguides. The
array is necessary to demonstrate transfer of energy across the soliton array. The significance or
impact is that this project is the first step to achieve photonic networks using discrete solitons-
all-optical routers. It is possible to use the discrete soliton arrays to switch optical information
from one channel to another, using only optical beams. For this reason, the results demonstrate

discrete solitons and their potential use in optical communication systems.
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ARRAYS TO SUPPORT SPATIAL SOLITONS

I. STATEMENT OF THE PROBLEM STUDIED

Route information is among the most important functions of a photonic network. In such
optical systems it is often highly desirable that routing is accomplished all-optically so as to
avoid unnecessary electro-optic conversion. If for example data is re-directed by a space-
switching matrix, it is also crucial that this process occurs with minimum diffraction induced
cross-talk or losses among nodes. The photorefractive nonlinearity offers a promising solution to
this problem since, under appropriate conditions, is known to balance diffraction effects. In fact,
in nonlinear waveguide arrays a self-trapped entity is possible, better known as a discrete soliton
(DS). By their very nature, discrete solitons represent collective excitations of a periodic lattice
as a whole and produce a balance between the photorefractive nonlinearity and discrete
diffraction effects. Optical DS were successfully observed in nonlinear AlGaAs waveguide
arrays. However, this requires high intensities while photorefractives can operate at very low
powers.

Recently our MURI team has shown that DS in two-dimensional nonlinear waveguide
array networks can provide a rich environment for all-optical data processing applications. More
specifically we have demonstrated that this family of solitons can be employed to realize routing,
blocking, logic functions, time-gating etc. In principle, DS can be navigated anywhere in the
network and act like optical wires. Even more importantly, DS can be routed at array
intersections and behave as DS switching junctions.

As an example, consider light in an array that propagates along the z-axis and is confined
in the transverse x-y plane. This represents a discrete soliton set in motion. This is done by
appropriately chirping (spatially) or tilting the soliton beam with respect to the z-axis. In order to
investigate the effects of bends on the behavior of DS, our team has numerically simulated the
process. Interestingly enough the DS can successfully negotiate a sequence of bends with very
little radiation/reflection losses. These losses can be accurately predicted from coupled mode



theory and can be effectively minimized by engineering the corner of the bend. In such a case,

the bending losses are expected below 0.5% after a 90° bend.
The effort of the MURI Fellow has evolved over the time of the grant into developing a

clear demonstration of this concept

1. SUMMARY OF THE MOST IMPORTANT RESULTS
1-D Discrete Diffraction and Modulation Instability

We examined a linear fixed array shown below. The array was excited by a probe beam
of longer wavelength to demonstrate discrete diffraction. We are now observing a clear
observation of modulation instability Ml in this 1D lattice. This effort has required us to develop
a clear understanding of the effect of the incident beam of a fixed lattice. In addition, we have
also uncovered the role of the background uniform beam on the waveguide and the comparison
with MI. The application of an applied field also shows trapping as a function of applied voltage
or optical intensity
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1-D Transverse Instability

We have recently observed a new type of transverse instability. As in the previous case we use
two laser beams that are focused with cylindrical lens to produce an interference pattern at the
entrance face of the crystal (2a). This interference array diffracts by the time it reaches the exit
face (2b). By applying a dc electric field solitons are formed in the crystal and the output beam

diameter reduces to the input beam diameter (2c). Figures 2(d-h) show transverse instability as
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the 1-D array splits into two arrays and a trance of a third array. Interference between the 1-D

arrays and a reference beam show a 180 degree phase shift between the outer arrays (2i).



Output Array after 40 minutes (2f)
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After a careful realignment making sure that the output beams were at the same level as the input
beams we again investigated the transverse instability. Using a higher intensity, the input beam
is shown in 3(a) while the output array is shown after 1 minute in 3(b). Here again after the
formation of a soliton array the array split into two and then four 1-D arrays after 10 minutes (3c)
and is much the same after 20 minutes (3d). Interference between the 1-D arrays and a reference
beam show a O degree phase shift between each array (3e).

Input Array at Higher Intensity (3a)
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In conclusion, the MURI Fellow has made the first observation of a transverse instability
associated with soliton array formation and has also observed discrete diffraction and modulation
instability in a 1-D array. Mr. Will Black has completed his thesis and has developed a model
that explains the observation of transverse instability and he is very grateful to the US Army

Fellowship program for being given the opportunity to do so.
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